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Leg design and jumping technique for humans, other
vertebrates and insects

R. McN. ALEXANDER
Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT, U.K.

SUMMARY

Humans, bushbabies, frogs, locusts, fleas and other animals jump by rapidly extending a pair of legs.
Mathematical models are used to investigate the effect muscle properties, leg design and jumping
technique have on jump height. Jump height increases with increased isometric force exerted by leg
muscles, their maximum shortening speeds and their series compliances. When ground forces are small
multiples of body mass (as for humans), countermovement and catapult jumps are about equally high,
and both are much better than squat jumps. Vertebrates have not evolved catapult mechanisms and use
countermovement jumps instead. When ground forces are large multiples of body mass, catapult jumps
(as used by locusts and fleas) are much higher than the other styles of jump could be. Increasing leg mass
reduces jump height, but the proximal-to-distal distribution of leg mass has only a minor effect. Longer
legs make higher jumps possible and additional leg segments, such as the elongated tarsi of bushbabies and
frogs, increase jump height even if overall leg length remains unchanged. The effects of muscle moment
arms that change as the leg extends, and of legs designed to work over different ranges of joint angle, are
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investigated.

1. INTRODUCTION

A wide variety of animals, including humans, make
standing jumps by rapidly extending a pair of legs.
Species that have been studied include fleas (Bennet-
Clark & Lucey 1967), locusts (Bennet-Clark 1975),
frogs (Calow & Alexander 1973; Hirano & Rome
1984; Lutz & Rome 1994) bushbabies and other
prosimians (Giinther 1985; Giinther ef al. 1991) and
humans (Bobbert & van Ingen Schenau 1988; Pandy
et al. 1990; Dowling & Varmos 1993). Recognized
adaptations for jumping include long, muscular legs,
sometimes with additional segments formed by elonga-
tion of tarsal bones (frogs, bushbabies) or by mobility
of the sacro-iliac joint (frogs) (Emerson 1985). At least
two techniques are used to improve jumping per-
formance by taking advantage of elastic elements in
series with the muscles. Humans make a countermove-
ment, bending the legs immediately before extending
them. Komi & Bosco (1978) have shown that this
enables them to jump higher than they otherwise
could. Jumping insects use catapult mechanisms,
storing elastic strain energy and then releasing it
suddenly to power the jump (Bennet-Clark 1976).
Bennet-Clark & Lucey (1967) showed that the jumps
of small insects require much higher power outputs per
unit mass than any known muscle can provide.
Catapult mechanisms enable work done relatively
slowly by muscles to be released much more rapidly at
take-off.

The aim of this paper is to improve our under-
standing of leg design in jumping animals and of the
techniques used for standing jumps. How does jump
performance depend on muscle properties, on the
distribution of mass in the legs and on the number of
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leg segments? To what angle should the joints bend, in
preparation for a jump? Can an advantage be gained
by having muscles whose moment arms change, as the
joint extends? In what circumstances can a counter-
movement improve a jump and when will a catapult
mechanism be more effective?

These questions will be tackled by mathematical
modelling. A model will be described that is general
enough to be applied to jumpers of all sizes and taxa;
from fleas to humans. Muscle properties, other aspects
of leg design and jumping technique will be varied and
the effects on jump height determined. Only vertical
jumps will be considered.

2. THEORY
(a) Model with two leg segments

The model used for most of the calculations is shown in
figure 1a. It jumps by extending its legs. The jump is
powered by knee extensor muscles which exert equal
moments about the two knees: the properties of these
muscles are described in §2¢. The model starts from
rest and its symmetry ensures that the jump is vertical.

Each leg consists of two segments, each of length s.
The point of contact of each foot with the ground is
vertically below the corresponding hip, and at time ¢
the angle of each knee is 26. The hips are at height y
from the ground and the knees are x lateral to them.
Thus

y = 2s-sind, (1)
y = 2s0-cos 0, (2)
x = s cos0, (3)
x=—s0sinf = —Lj-tan6, (4)
and from equation 20 = (j-sec6)/2s. (5)
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Figure 1. Models of bipedal jumpers with: (a) two segments; and (b) three segments in each leg. (¢) The force-velocity
relationship for the models’ muscles, described by equations (22). The force is expressed as a multiple of the isometric

force (i.e. as F /F, i)

We will obtain an equation of motion by considering
energy balance. At time ¢ the knee muscles are
exerting moments 7" about the knees, each of which is
extending at a rate 20. The rate at which the knee
muscles are doing work must equal the sum of the rates

of increase of the potential energy P and kinetic energy
K of the model

476 = P+K. (6)

The trunk has mass m,, the two thighs together m,
and the two lower legs together m,. Each leg segment
is a uniform rod, so its centre of mass is midway along
its length. Thus these centres of mass are at heights
3y/4,y/4, and the potential energy of the model is

P = (gy/%) (4m,+3my+my), (7)

(¢ is the gravitational acceleration). The equation
implies that the centre of mass of the trunk is at the
height of the hip joints, but this assumption has no
effect on the analysis because we will be using the
derivative of the potential energy, rather than the
potential energy itself.

The trunk moves vertically with velocity y. The
centres of mass of the thighs and lower legs have
vertical components of velocity 3y/4,4/4 and hori-
zontal components +x/2, +%/2. Each thigh has
moment of inertia m, s*/24 about its centre of mass, and
angular velocity + 6: and each lower leg has moment of
inertia mys*/24 and the same angular velocity. Thus
the total kinetic energy of the model is

K= (g2/32> (16m; +9my +my) + (xz/g) (my+my)
+ (5292/24) (my +my),
= (7°/24) [12m1+7m2+m3+tan20(m2+m3)], (8)

(using equations (4) and (5) to substitute for # and 6
and remembering that sec®§ = 1+ tan®6)
It will be convenient to write

my = my+msg, 9)

Phil. Trans. R. Soc. Lond. B (1995)

and the rate of shortening as a multiple of the maximum shortening speed (as —d/d

max)'

my = 4my + 3my,+ms, (10)
mg = 12my + Tmy+ my, (11)
so that equations (7) and (8) become

P = gyms/4, (12)
K = (4%/24) (mg+m, tan®6). (13)
By differentiating with respect to time

P = gjm;/4, (14)

K = (44/12) (mg+m, tan® 0)
+ (4%/24) (2m, O tan Osec?6). (15)
By substituting equations (14) and (15) in (6), and
using (5) to eliminate 6
2TsecO/s = gmy/4+ (§/12) (mg+m, tan® 0)
+ (my §*/24s) tan Osec® 0,
§ = (48 T'sec 0 —6my gs —m, §* tan O sec® 0)
/[2s(mg +m, tan®9)]. (16)
This equation is used to calculate the motion of the
model during take-off. The height y of the hips is
obtained by numerical integration and from it the knee
angle 20 by using equation (1). The force F; on the
ground is the sum of the weight of the body and the

forces needed to give the segments their vertical
components of acceleration

E = mg+m,i/4, (17)
where m is the total mass of the body
m = m, +my+ms. (18)

When y > 25 or /; < 0, the feet have left the ground.
At the instant when they leave the ground, y = y,,; and
= Yoy The centre of mass of the model is then
rising at a rate mg g, /4m (this is P/mg, equation (14)).
A projectile fired vertically with velocity v rises to a
height v?/2g, so the centre of mass will rise by
miy2,/32m*g after the feet have left the ground. If the
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joints remained fixed at the angles they had when the
feet left the ground, the hips would rise to a height
Yor + M2 42/ 32mPg at the peak of the jump. However,
they will rise a little higher if the legs become
completely straight, moving the centres of mass of
thighs and lower legs distances (2s—vy,,)/4 and
3(2s—y) /4 further below the hips. Thus the dif-
ference of height between the hips and the centre of
mass of the whole body is increased by
(my+3my) (25 —yo) /4m. The height of the jump,
defined as the height of the hip joints above the ground
at the peak of the jump, is thus

h= Yo+t (mg ygff/32m2g) + (my+3my) (25 —yop) /4.
(19)

(b) Model with three leg segments

Some calculations will be presented for the model
shown in figure 14, which has three segments in each
leg instead of two. These are a thigh of length s/2, a
shank of length s and a metatarsal segment of length
s/2. The distribution of mass along the length of the leg
is the same as for the previous model; thus the thigh
and metatarsal segment are uniform rods of masses
my/4, my/4 and the shank consists of two uniform rods,
each of length s/2, joined end to end; the proximal half
of the shank has mass m,/4 and the distal half m,/4.

The two joints in each leg are constrained always to
have equal angles, perhaps by a parallel rule mech-
anism (not represented in the diagram). The muscular
moment 7" may all be applied at one of the joints, in
which case a moment is transmitted to the other by the
linking mechanism. Alternatively, moments totalling
T may be applied to the two joints by separate muscles.
The mathematical analysis is the same, in either case.

The equation of motion can be obtained by a similar
argument to the one presented for the model with only
two leg segments, in'§2a. The more concise argument
that follows leads to the same conclusion.

Mass in this model is distributed over height in
precisely the same way as in the previous model, so at
any given hip height y the potential energies of the two
models are equal. Also, at any given hip velocity y the
vertical components of velocity of particles in cor-
responding positions in the two models are equal:
therefore, the kinetic energies associated with vertical
components of velocity are equal. However, particles
in the legs of this model are on average only half as far
from the vertical line from hip to foot, as in the other
model. Therefore the transverse displacements that
occur as the leg straightens are halved, transverse
components of velocity are halved and kinetic energies
associated with transverse components of velocity are
only one quarter as much as in the previous model. In
equation (13), these kinetic energies are represented by
the term in m,. It follows that we can obtain the
equation of motion for the model with three segments
in each leg by dividing by four those terms in equation
(16) which include m,. Equivalently, we can multiply
by four the terms on the right which do not include m,

§ = (192 T'sec 0 —24m, gs—m,y* tan O sec® 6)
/[2s(4mg+m, tan®0)].  (20)

Phil. Trans. R. Soc. Lond. B (1995)

Leg design and jumping technique

R. McN. Alexander 237

(e) Muscle properties

The extensor muscle which powers the jump consists
of a contractile element in series with an elastic
element. Any change 860 in the half-angle of the knee
requires a change 2780 in the overall length of the
muscle, where 7 is the moment arm of the muscle about
the joint. This is the sum of length changes da in the
contractile element and 04 in the elastic element.

980 = da+ ob. (21)

The contractile element has force—velocity properties
expected to be realistic for striated muscle. More
specifically, the force [, that the muscle exerts is
related to the rate of change of length 4 of the
contractile element

for —a<0

Fo=F, i [1.8—0.8(dy, —d)/(dnat+23d)], (22a)
for 0 < —a < dy,,

By = By sodmax + )/ (dmax—34d),  (220)

for —da>dyp,, I, =0, (22¢)

(see figure 1¢). Here [ ,, is the force exerted in
isometric contraction and dy,,, is the maximum rate of
shortening of the contractile element. Equation (224)
is Hill’s (1938) equation for muscle shortening, with
some signs changed because shortening is a negative
length change. Similarly, equation (22a) is Otten’s
(1987) equation for stretching of active muscle. In
these equations, the constant describing the curvature
of the force-velocity relationship (a/F, in Woledge ¢t al.
1985; £ in Otten 1987) is given the value 0.33. This
value is typical for fast skeletal muscle (Woledge et al.
1985).

The elastic element is a linear spring of compliance
C, which undergoes extension 4 when force F acts on
1t

E, =b/C. (23)

At every stage in take-off, the forces given by equations
(22) and (23) must be equal.

We will see, in section 5 (a), how forcible stretching
of the muscle in a countermovement can enable it to
exert increased force in a subsequent contraction. This
results from interaction of the series compliance with
the force—velocity properties of the contractile ele-
ments. No attempt is made in the model to reproduce
an additional effect of an initial stretch, ‘potentiation’
of the contractile machinery itself. This effect seems
relatively unimportant (Ettema et al. 1990).

The moment arm r is related to the angle 26 of the
joint by the equation

r=r,[1 + (6k/m) (0—T/3)]. (24)

When k£ = 0 (as in most of the calculations that will be
presented) the moment arm has a constant value 7.
When it has other values, the moment arm changes
linearly from (1 —#%)r, when 0 = /6 to (1+4k)r, when
6 = m/2. Note that the mean moment arm, over this
range, is always 7,. In most of the simulations presented
in this paper, including all those in which r varies, the
minimum value of 6 is ©/6. When the leg is fully
extended, 60 = /2.


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

238 R. McN. Alexander

The moment 7" cxerted by the extensor muscle
about the joint is

T=Fnr. (25)

3. COMPUTATION

The equations given above were incorporated in a
program run on a desk-top computer. This simulated
jumps starting from rest, following the model’s move-
ments by numerical integration until the feet left the
ground. Equation (16) or (20), as appropriate, was
used to calculate the changes of velocity § and hip
height y during each time increment. Hence joint angle
was calculated using equation (1). The increment of
joint angle was partitioned between the contractile and
scries elastic elements of the muscle by stipulating that
the muscle forces given by equations (22) and (23)
must remain equal. The force so obtained was used as
the muscle force for the next time increment.

Integration ceased when the force on the ground
(equation (17)) fell to zero. The height of the jump was
then calculated, using equation (19). Halving the time
increments in a sample of runs altered jump heights by
less than 19,.

Simulations were performed for three jumping
techniques. In the following description, 26, is the
minimum angle to which the knee bends in preparation
for the jump.

1. Squat jumps. The simulation starts at rest, with
knee angle 20,,,,. Initially force F,, is zero and the knee
is prevented from bending further by a passive stop as
occurs, for example, when a person is squatting with
the posterior surface of the thigh resting on the calf.
The muscle is activated and contracts, stretching the
series elastic elements and building up a moment. No
movement occurs until the acceleration given by
equation (16) or (20) becomes positive, at which
instant the legs start extending.

2. Catapult jumps. Again, the model is initially at rest
with knee angle 26, ;. The muscle is active, exerting its
isometric force F, i, but the joint is prevented from
extending by some other means. For example, the knee
extensor muscle in locusts develops tension prior to a
jump, while extension is prevented by an antagonist
(Bennet-Clark 1975). The joint is suddenly released (in
locusts, the antagonist relaxes very rapidly) and take-
off starts.

3. Countermovement jumps. The model is initially at
rest with the legs straight and the muscle inactive. It
falls for a while under gravity according to equation
(16) or (20), with F, fixed at zero. At some stage
during its fall, the muscle is suddenly activated. A
moment is developed at the knee, decelerating the fall
and then accelerating the model upwards to take off.
The time at which the muscles are activated is varied
in successive trails to find by trial and error the time
required to make the minimum knee angle reached in
the simulation equal the chosen value 26,,;,.

The results obtained in this study will be presented
in dimensionless form using body mass m as the unit of
mass, leg segment length s as the unit of length and
gravitational acceleration g as the unit of acceleration.

min*

Phil. Trans. R. Soc. Lond. B (1995)
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Thus the unit of time is (s/g)%. The following
parameters will be used to describe muscle properties:

the isometric force parameter

B = B sso o/ M85, (26)
the shortening speed parameter
i = (a7 (5/8)" (27)
and the compliance parameter
C=CE, /1, (28)

4. VALUES FOR PARAMETERS

The models presented in this paper are designed to
throw light on jumping by animals ranging from
humans to small insects. Our choice of parameters will
be guided principally by data for humans (body mass
approximately 70 kg), bushbabies (Galago senegalensis
and moholi, 0.3 kg) and locusts (Schistocerca gregaria,
2g).

The total mass of the two thighs is 20 9, of body mass
both in humans and in Galago (Winter 1990; Grand
1977). The mass of the two lower legs and feet is 12 9,
of body mass in humans and 109, in Galago (same
sources). A reasonably realistic model of jumping
mammals can therefore be obtained by taking m, =
0.7m, my = 0.2m and mg = 0.1m; these segment masses
have been used except where it is stated otherwise.
Note, however, that at least some insects have relatively
lighter legs. The two femora of Schistocerca total only
149, of body mass and the two tibiae and tarsi only
39, (Bennet-Clark 1975).

The minimum knee angle, in the countermovement
prior to jumping, is about 75° in humans (Bobbert &
Van Ingen Schenau 1988) and 30° in Galago (Giinther
1985). An intermediate value of 60° will be used as the
minimum knee angle (260,;) in this study, except when
the effects of varying this angle are being investigated.
Note that the chosen angle is much too large to be
realistic for Schistocerca, which bends the knee almost to
0° in preparation for jumping (Heitler 1977).

Peak ground forces in standing jumps are generally
2-3 times body mass for humans (Dowling & Vamos
1993), up to 13 times body weight in Galago (Giinther
1985), about 18 times body weight in Schistocerca
(Bennet-Clark 1975) and up to at least 135 times body
weight in fleas (Bennet-Clark & Lucey 1967). Isometric
force parameters Iy, ;, of one, five and 25, respectively,
will be used in simulations designed to represent jumps
by humans, bushbabies and insects. When the muscles
exert these forces at knee angles (28) of 60°, the ground
forces (exerted by the two feet together) are 2.3, 12 and
58 times body weight, respectively. The peak forces
exerted in simulated jumps may be somewhat more or
less than these values, depending on the jumping
technique (see figure 2).

Maximum shortening speeds of muscles are usually
expressed in terms of muscle fascicle lengths per second.
To select realistic values of d,,, for investigation, we
must first estimate the resting length of the muscle
fascicles. In most of the simulations, the knee will
extend from a minimum angle of 60° so its working
range, from the minimum to full extension, is 120° or
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2.1 radians. A muscle with a moment arm 7,, moving
the joint through that angular range, must shorten by
2.1 r,. Studies of rabbit leg muscles (Dimery 1985) and
bird wing muscles (Cutts 1986) indicate that the
working range of length of muscles is commonly about
one quarter of the resting length, so a muscle required
to shorten by 2.1 r, can be expected to have fascicles
about 8.47, long. For a muscle shortening at ¢ lengths
per second, the shortening speed can thus be estimated
as 8.47 €.

In this paper, muscle shortening speeds are repre-
sented by the dimensionless parameter (d/r,) (s/g)%
which, by the argument of the previous paragraph,
equals 8.4é(s/g)%. Leg segment length s would be about
450 mm for humans, 66 mm for Galago (Grand 1977)
and 25 mm for Schistocerca (Bennet-Clark 1975). The
corresponding values of (s/g)% are 0.21 s for humans,
0.08 s for Galago and 0.05 s for Schistocerca.

The maximum shortening speed for fast fibres from
human deltoid muscles is 4.9 lengths per second (less in
trained swimmers; Fitts ef al. 1989), and it seems likely
that knee extensor muscles would be about equally fast.
I have no data for bushbaby muscle, but bushbabies
are similar in mass to rats in which a fast leg muscle
(extensor digitorum longus) has a maximum short-
ening speed of about 15 lengths per second (Woledge et
al. 1985). These data give shortening speed parameters
(8.4é(5/g)%, see above) of nine for humans and ten for
bushbabies. However, Tihanyi et al. (1982) give the
maximum shortening speed of human knee muscles in
terms of the angular velocity of the knee, as 18 rad per
second for subjects with predominantly fast fibres. This
IS dpae/7,, implying that the shortening speed par-
ameter is only 18 x 0.21 = 4. These data indicate that
the parameter is likely to be in the range 4-10, for
humans and bushbabies. Most of the graphs in this
paper show data for a shortening speed parameter of 8,
but the effects of variations in the range 2-32 have
been investigated.

Orthopteran wing muscles have maximum short-
ening speeds up to 16 lengths per second (Josephson
1984). If locust knee extensor muscles were as fast as
this, their shortening speed parameter would be
8.4 x 16 x0.05 = 7, about the same as for humans and
bushbabies. The shortening speed seems actually to be
much lower than this, about 1.8 lengths per second
(Bennet-Clark 1975), giving a shortening speed par-
ameter of only 0.8. It seems probable that the
parameter is also small for smaller insects. For a flea,
segment length s, would be of the order of 1 mm,
making (s/g)? about 0.01's. The fastest muscles that
have been investigated have shortening speeds of about
25 lengths per second (Woledge et al. 1985). Even with
muscles as fast as this, the shortening speed parameter
of a flea would be only 8.4 x 10 x0.01 = 1.7. For some
of the insect simulations, the parameter will be given a
value of 1.

We must take account of the force the muscle can
exert, in selecting values for series compliance. Sarco-
meres are stretched about 1.59%, by their isometric
force (Huxley & Simmons 1971). Thus the lowest
likely value for the series compliance of a muscle of
length 8.4, (see above) is 0.015x8.4r /F,

,iso
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0.137,/F,, i, At the other extreme, we may imagine a
muscle whose tendon stretched elastically by 2.1r, (our
estimate of the muscle’s working range of length) when
the muscle exerted its isometric force. In that case the
compliance would be 2.17,/F, ;. Results will be
presented for compliance parameters CF, ;. /7, ranging
from 0.125 to 2.

The strain energy stored by elastic structures prior to
the jump in locusts exceeds the energy of the jump,
implying that the compliance parameter is a little more
than 2 (Bennet-Clark 1975). Realistic values for
mammals are harder to estimate. Isometric muscle
forces impose stresses around 50 MPa on highly-
stressed tendons such as the human gastrocnemius
(Ker et al. 1988), stretching them by about 4 9, of their
length (see figure 1.6 in Alexander 1988). Suppose that
the total length of tendon or aponeurosis in series with
each muscle fascicle is twice the length of the fascicle,
a value within the commonly found range for pennate
muscles. Then if the length of the fascicles is 8.4, (as
already estimated) the extension of the tendon is
2x8.4x0.04r, = 0.7r, and the compliance parameter
is 0.7.

5. RESULTS AND INTERPRETATION

This section presents results and tries to explain in
words why the mathematical models behave as they
do. Discussion of the light thrown by the models on the
design and jumping techniques of real animals is
deferred to the next section.

(a) Predicted forces

Figure 2 shows sample simulations, one for each of
the three jumping techniques. The chosen isometric
force (1.0mgs/r,) gives peak ground forces in the range
2-3 mg which is typical of human jumping.

Figure 2a shows a squat jump. Initially, the force on
the ground equals body mass and the muscle is
inactive. At time, { = 0, the muscle is activated and its
contractile element starts to shorten, stretching the
series elastic element and building up tension. By ¢ =
0.14(5/g)% it is exerting enough moment to start
extending the knee. The muscle force continues to rise
as the series elastic elements are stretched further: but
never reaches the isometric value because the con-
tractile elements are shortening throughout take-off.
Later, the muscle force falls because the contractile
elements’ rate of shortening is increasing, allowing the
series elastic elements to recoil. Eventually, the muscle
is exerting too little moment to maintain the angular
acceleration of the leg segments that would be needed
to keep the feet on the ground while the trunk
continues to rise. The feet leave the ground at a knee
angle (in this simulation) of 146°.

Figure 26 represents a catapult jump. In this case
the muscle is active from the start, exerting its isometric
force, and the series elastic element is correspondingly
stretched. The knee is prevented from extending until
t = 0, when it is suddenly released. The force on the
ground rises abruptly and the body accelerates to take-
off. As the knee extends, the series elastic elements
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Figure 2. Examples of simulated jumps: (@) represents a squat jump; (4) a catapult jump; and (¢) a countermovement
jump. The force exerted on the ground (expressed as F,/mg), the force exerted by the knee extensor muscles
(expressed as F;, /F,, ...) and the knee angle (26) are plotted against the time parameter ¢(g/s)*®. These are jumps by
the model with two-segment legs (see figure 1) with muscles exerting human-like forces (isometric force parameter

E, ., = 1.0). The shortening speed parameter d,,, is 8, the compliance parameter Cis 1.0 and segment masses are

m,iso

m, = 0.7m, my = 0.2m, my = 0.1m.
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Figure 3. Contour plots showing the dependence of jump height on the maximum shortening speed of the muscles
and their series compliance: (a) refers to countermovement jumps with human-like forces (isometric force parameter

Fm,iso =1); (4) to countermovement jumps with bushbaby-like forces (Fm,iso =35); and (¢) to catapult jumps with
insect-like forces (£}, ;,, = 25). The axes show the shortening speed parameter d,, and the compliance parameter C,

and the contours give relative jump height %/s. The legs have two segments, and segment masses are m, = 0.7m,
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my = 0.2m and my = 0.1m, throughout.

recoil, the contractile elements shorten progressively
faster and the muscle force falls.

Figure 2¢ represents a countermovement jump.
Initially the leg is straight; the muscles are inactive but
the feet rest on the ground exerting a force which
diminishes as the body falls under gravity. The leg
bends until, at =0 (when the knee angle, in this
example, is 96°), the muscles are activated. Tension
builds up and the fall is decelerated until at ¢=
0.8(s/g)% (in this example), when the knee angle is 60°,
the fall is halted and the body begins to rise again.
Immediately prior to this the muscle was being
stretched and the force in it had risen a little above the
isometric value (to 1.08F, ;). In the very early stages
of knee extension, the force is still above the isometric
value: the contractile elements are still being stretched
but the series elastic elements are shortening faster (by

Phil. Trans. R. Soc. Lond. B (1995)

elastic recoil) and the muscle, as a whole, is shortening
— extending the knee. Only when the elastic recoil has
proceeded far enough for the muscle force to drop
below F, ,, do the contractile elements begin to
shorten.

,iso

(b) Effects of muscle properties

Figure 3 shows how the height of a jump depends on
the maximum shortening speed of the muscles and the
series compliance: (a) for human-like ground forces;
(b) for bushbaby-like ground forces; and (¢) for insect-
like ground forces. The simulations are of counter-
movement jumps in figure 3 a, b and a catapult jump in
figure 3¢, in accordance with the jumping techniques
used by humans, bushbabies and insects, respectively.

Comparison of figure 3a and 34 shows, as expected,
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Figure 4. A comparison of three jumping techniques. In each graph relative jump height £/s is plotted against the
compliance parameter C, for: (continuous line) squat jumps; (short dashes) countermovement jumps; and (long

dashes) catapult jumps. Isometric forces are (a), human-like (%

= 1); (b), bushbaby-like (£

m,iso

=5); and (c),

m, iso

insect-like (F .. = 25). In every case the shortening speed parameter 4, is 8 and segment masses are m;, = 0.7m;

m,iso

my = 0.2m; and m, = 0.1m. The legs have two segments.

that larger muscle forces give higher jumps. Both these
graphs refer to countermovement jumps, but isometric
force (expressed as a multiple of body mass) is larger in
b than in g, and jump heights (as multiples of leg
length) are also larger. Examination of the contours on
each graph shows that for constant isometric force,
faster muscles and higher compliances given higher
jumps. Faster muscles can exert more force, at given
rates of shortening. Series elastic elements can shorten
by elastic recoil at unlimited rates. Also, series elastic
elements make it possible for muscle forces that are
greater than the isometric force, developed during a
countermovement, to persist into the early stages of leg
extension. This was explained in §5a.

By how much might increased compliance be
expected to improve jump height? In many cases, the
peak force exerted by the muscles during takeoff is
close to their isometric force F ,,, (see figure 2). This
force, acting on compliance C, stores strain energy
3F2 10 C in each leg, a total of Fy ,,C. By equations
(26) and (28) this equals F ;, Cmgs, enough to raise
the animal’s centre of mass by £, ;.. Cs. Thus if all the
stored strain energy were converted to gravitational
potential energy in the jump, an increase in C from
0.125 to 2 (the range investigated in figure 3) would
improve jump height by 1.9s when Finiso = 1; by 9.4s
when meiso =5; and by 47s when Fm'iso = 25. The
improvements predicted by the model are substantially
less than this, as can be seen by comparing jump
heights for compliance parameters of 0.125 and 2, for
any chosen value of the shortening speed parameter, in
figure 3a, b or ¢. Reasons for this include peak forces
being less than isometric for squat jumps (see figure 2a)
and some countermovement jumps; and to some
energy being required to give kinetic energy to the legs
(see §5d).

In countermovement jumps (see figure 3a, &) jump
height is more sensitive to the speed of the muscles than

Phil. Trans. R. Soc. Lond. B (1995)

to the series compliance: an increase of (say) 109, in
muscle shortening speed generally increases jump
height more than a 109, increase in compliance. In
catapult jumps (see figure 3¢), however, jump height is
more sensitive to compliance than to the speed of the
muscles, except when compliance is very low.

The catapult jumps of figure 3¢ involve much larger
isometric forces (relative to body mass) than do the
countermovement jumps of figures 3a, 5. The state-
ments of the previous paragraph nevertheless remain
true, when comparisons are made between counter-
movement and catapult jumps with equal isometric
forces.

(¢) Comparison of jumping techniques

Figure 4 shows results of simulations of the three
jumping techniques, with the isometric muscle forces
chosen to represent: (a) human jumping; (6) bushbaby
jumping; and (¢) insect jumping. Results are shown in
each case for a range of series compliances, for one
maximum shortening speed.

With zero series compliance, the three techniques
would give jumps of identical height for the following
reasons. In a squat jump, muscle force would rise
instantaneously to the isometric value when the muscle
was activated; and in a countermovement jump,
muscle force would fall to the isometric value at the
instant when the knee ceased bending and started to
extend. Thus knee extension would start in every case
with 6 =0,,,, d =0 and F, = F, .

As compliance increases, all three techniques give
higher jumps but squat jumping is less successful than
the others because muscle force is less than the isometric
value when knee extension starts. The relative merits of
catapult and countermovement jumping depend on
the isometric force. In the human simulations the two
techniques give similar jump heights (see figure 4a).


http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org

242 R. McN. Alexander

(@) (]

Leg design and jumping technique

massless
50

insect-like

= = =
= 205 =
Q Q Q
= £ =
2.0 ~L 1 i ) 0 1 1 | J 0 1 1 1 J
0.125  0.25 0.5 1 2 0.125 0.25 0.5 1 2 0.125 025 0.5 1 2
compliance compliance compliance
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m, = 0.7m, my = 0.1m, my = 0.2m. Three segment legs are as shown in figure 14; others as in figure la. (a) shows the

heights of countermovement jumps with human-like forces (

like forces (F,

m, iso
oy 18 8 1n all cases.

With moderate compliances, countermovement jumps
are a little higher than catapult jumps because the
maximum muscle forces are greater than isometric (see
figure 2¢). If the compliance is very high, however, the
potential energy lost in the body’s fall in a counter-
movement is not enough to build up so much force in
the series elastic elements, and catapult jumps are
higher.

In the bushbaby and insect simulations (see figure
4b,c), isometric muscle force is not attained in
countermovement jumps except when the series com-
pliance is very low. Consequently, catapult jumps are
higher than countermovement jumps over a wide
range of compliances. In the insect case (see figure 4¢)
a countermovement gives very little advantage over a
squat jump.

A simple calculation will give a rough indication of
the circumstances in which a countermovement jump
can be expected to be higher than a catapult jump. In
simulations like those of figure 4, in which the minimum
knee angle is 60°, the trunk falls a distance s in a
countermovement which starts with the legs straight.
The leg segments fall smaller distances, so the potential
energy lost in the fall is a little less than mgs. When a
muscle is exerting its isometric force, strain energy
3CF2 |, is stored in its series elastic element. For the
potential energy lost to supply enough strain energy to
raise the force in the series elastic elements of both

muscles to £, i,

mgs > CF?

é< l/},;“nrx,iso' (29}

The right-hand side of this inequality is 1.0, 0.2 and
0.04 for the human, bushbaby and insect simulations,
respectively. These are the maximum values of the
compliance parameter C at which countermovement
jumps might be expected to be higher than catapult
jumps. However, it should be noted that some of the
strain energy may be supplied as work done by the

Phil. Trans. R. Soc. Lond. B (1995)

E

= 1); (b), countermovement jumps with bushbaby-

m, iso

=5); and (¢), catapult jumps with insect-like forces (f7 ;= 25). The shortening speed parameter

muscles, especially if the maximum shortening speed is

high.

(d) Mass distribution in the legs

Figure 5 compares jumps by animals with different
distributions of mass in their legs. As in previous
figures, the isometric forces have been chosen to
represent: (¢) humans; (4) bushbabies; and (¢) insects.

In each case, the highest jumps were achieved when
the legs were given no mass. Mass in the legs reduces
the height of the jump because some of the work done
by the muscles is required to provide internal kinetic
energy (energy associated with movement of parts of
the body relative to the centre of mass). Unlike the
external kinetic energy (associated with movement of
the centre of mass), this energy does not become
potential energy as the animal rises to the peak of the
jump, so does not contribute to the jump’s height.
Some of the internal kinetic energy is associated with
differences in the vertical component of velocity at
take-off, between the leg segments and the trunk (see
discussion of the effect of foot mass on jumping,
Alexander 1988). The rest is due to the horizontal
components of velocity given to parts of the legs, as the
legs straighten in take-off.

The total mass of the legs seems more important
than the distribution of mass within the legs. A
mammal-like mass distribution, with the thighs twice
as heavy as the lower leg (‘mammal-like’, figure 5a)
gives only slightly higher jumps than when the masses
of thighs and lower legs are reversed (‘heavy feet’).
This seems to be due to the part of the internal kinetic
energy at take-off due to transverse components of
velocity being larger than the part due to differences in
vertical velocity. The former part is the same for both
mass distributions (for given trunk velocity) but the
latter part is greater when the lower leg is the heavier
segment.
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human-like forces (Fm’iso

=1); (b) to countermovement jumps with bushbaby-like forces (£

=3); and (¢) to

m,iso

catapult jumps with insect-like forces (£ . = 25). Other details are as in figure 4, and as explained in the text.

m, iso

The leg segments of jumping insects such as locust
are much smaller fractions of body mass than are thosi
of humans and bushbabies (see §4). Figure 5¢ shows
that even their mass reduces jump height appreciably,
in comparison with hypothetical massless legs.

(e) Number of joints

Figure 5a, b also shows results for a model with
three-segment legs (figure 14). This jumps higher than
the mammal-like two-segment model although it has
the same distribution of mass along the legs. The
reason is that the joints of the three-segment leg are
initially closer to the vertical line through the hip.
Therefore, the transverse displacements and transverse
velocities that occur, as the leg straightens, are smaller
for the three-segment leg. It was shown in the
derivation of equation (20) that at the same vertical
velocity y, the kinetic energy associated with transverse
leg movement is only one quarter as much for three-
segment legs, as for two-segment legs.

(f) Leg Length

To discover the effect of changing leg length we will
compare animals with equal masses of leg muscle: that
implies those with equal values of F 7., as F i, is
proportional to the cross-sectional area of the muscle
and (as explained in §4) 7, can be expected to be
proportional to muscle fibre length. The leg muscles, of
the animals to be compared, will be capable of
shortening at equal numbers of lengths per second:
hence, as explained in §4, they have equal values of
Gmax/To- Thus we will compare a standard animal with
leg segments of length s, with an isometric force
parameter [, ;, and a shortening speed parameter
Gpax; With a modified animal with legs of length s, with
an isometric force parameter Fp1s0 (5/57) and a short-
ening speed parameter dmax(s’/s)% (see equations (26)
and (27)). The compliance parameter (see equation
(28)) is not affected by the change of leg length. Jump
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height will be expressed as a multiple of the standard
leg length (i.e. as #/s). Because leg muscles are generally
more massive than the leg skeleton, we will ignore any
increase of leg skeleton mass that may be made
necessary by increased leg length.

Results are shown in figure 6, calculated for isometric
forces representing : (¢) humans; (6) bushbabies; and
(¢) insects. In every case, longer legs give higher jumps.
This is partly because longer-legged animals start a
jump with the centre of mass higher above the ground.
When the feet are on the ground with the knees bent at
60° (the starting angle in every case, in figure 6) the
hips and centre of mass are a height 1.0s above the
ground when relative leg length s"/s is 1.0, but 2.0s
above the ground when s'/s = 2.0. In addition, longer
legs enable the animal to accelerate over a greater
distance, so the muscles do not have to shorten in so
short a time, to accelerate the animal to given speed.
Their rate of shortening can be lower so they can exert
more force (see figure 1¢) and do more work.

Notice that for catapult jumps simulating those of
insects (figure 6¢), leg length has little effect on jump
height when compliance is high. The reasons are that
jump heights are large multiples of leg length, so the
initial height of the centre of mass from the ground is
relatively unimportant; and the work done by elastic
recoil is the same, whether the recoil is fast or slow.

(g) Moment arms

Suppose a given volume of muscle of given properties
is required to operate a joint. Anatomical consider-
ations may make it convenient to have a long-fibred
muscle with a large moment arm, or a short-fibred
muscle with a short moment arm. But if fibre length is
made proportional to moment arm, these two muscle
arrangements will have precisely the same mechanical
effect: they can exert the same moment and move the
joint at the same angular velocity (Alexander 1981).
Because muscle volume is assumed constant, longer
fibres imply a smaller physiological cross-sectional
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Figure 7. The effect of changing moment arms on jump height. Relative jump height /s is plotted against the
moment arm parameter & (equation 24): (a) shows the heights of countermovement jumps with human-like forces

(meiso = 1) for three different values of the compliance parameter C; (b) shows the heights of countermovement jumps
with bushbaby-like forces (I, ,,, = 5), for the same three values of the compliance parameter; and (¢) shows the

heights of catapult jumps with insect-like forces (£, ,,, = 25) for two values of the shortening speed parameter. In (a)
and (b) the shortening speed parameter is 8. In (¢) the compliance parameter is 2. The legs have two segments.
Segment mass are m; = 0.7m, m, = 0.2m, m, = 0.1m except in the case of the broken line in (¢), for which m; = m,

my, = my = 0.
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Figure 8. Graphs of muscle force (F, /F,, ,,,) against muscle length, for selected jumps with muscles of zero compliance.
Muscle length is expressed as a fraction of the working range, so that it is zero when the leg is fully extended and 1.0
when the knee is bent to its minimum angle. (a) and () compare jumps with different moment arm factors £, for
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compares jumps with different starting angles 26

min

for jumps with human-like forces (F,

"m.iso = 1) and a shortening

speed parameter of 8. All graphs refer to two-segment legs with m, = 0.7m, m, = 0.2m, my, = 0.1m.

area. For this reason, we will not investigate the effect
of changing the mean moment arm 7,.

There may, however, be an advantage in having a
moment arm that changes, as the joint extends. This is
achieved in the models by giving the factor £ (equation
(24)) a non-zero value. When £ is positive the moment
arm increases as the joint extends. The mean moment
arm, over the range of knee angles from 60° to 180°,
equals 7, for all values of £.

Figure 7a shows that for countermovement jumps
with isometric forces representative of humans, the
lowest values of £ give the highest jumps. Figure 7¢
shows that the same is true of catapult jumps with
insect-like forces. Figure 74, however, shows that for
countermovement jumps with bushbaby-like ground
forces, the highest jumps may be obtained with the
highest values of £ (for the higher compliances in this

Phil. Trans. R. Soc. Lond. B (1995)

figure) or with intermediate values (for low compli-
ances). In these simulations, the muscles were given a
maximum shortening speed which is believed to be
realistic for small mammals such as bushbabies (see
§4). Simulations with faster muscles gave the highest
jumps for the lowest values of £, as in figure 7a.

To explain these confusing results we must consider
both the force-velocity properties of the muscles and
the influence of leg mass. To see the effects of the
force—velocity properties clearly, we will compare
jumps with zero series compliance. As alrcady ex-
plained (see §5¢) such jumps are identical whether a
squat, catapult or countermovement technique is used.
In figure 84, b, muscle force is plotted against muscle
length for jumps with different values of £. In all cases,
the muscle initially exerts its isometric force, but the
force falls as the muscle shortens at an increasing rate.
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in the text. Relative jump height 4/s is plotted against starting angle 26
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(a) human-like; (b) bushbaby-like forces; and (¢) catapult jumps with insect-like forces. Other details are as for

figure 7.

At first it falls faster for negative values of £. This is
because negative values of £ give moment arms which
are initially high, requiring the muscle to shorten faster
for any given angular velocity of the joint. Later,
however, muscle force falls more slowly for negative
values of £ (for which the moment arm is decreasing)
than for positive values (for which it is increasing).
Consequently, the graphs for negative and positive
values of k£ cross, and the negative values give the
higher muscle forces in the later stages of take-off.

The areas under the graphs in figure 8 represent the
work done by the muscles. In figure 84 the maximum
shortening speed of the muscle is low and the muscle
does 89, less work for k== —1 than for £ =+0.5. In
figure 85 however, a faster muscle does 18 %, more work
for k = —1 than for £ = 4+0.5. These simulations used
bushbaby-like muscle forces, as did the simulations in
figure 64 in which the maximum shortening speed of
the muscles has an intermediate value.

The optimum value of £ in countermovement jumps
depends mainly on the force—velocity properties of the
muscles, though series compliance also has an effect, as
figure 7b shows. The heights of catapult jumps with
insect-like muscle forces and high series compliances
depend very little on the force-velocity properties of the
muscles (see figure 3¢), and in such cases we must look
for a different explanation of the dependence of jump
height on £.

An explanation is suggested by a comparison in
figure 7¢, between the continuous lines (for legs with
mass) and the broken one (for legs of zero mass). The
former show lower jump heights for the reason given in
§5d; some of the work done by the muscles is required
to provide internal kinetic energy associated with

movement of leg segments relative to the centre of

mass. Another difference between the continuous and
broken lines is that the former show jump height
decreasing as £ increases, but the latter shows heights
that are almost independent of £. The reason that leg
mass makes jump height dependent on £ is that a major

Phil. Trans. R. Soc. Lond. B (1995)

part of the internal kinetic energy at take-off (repre-
sented by the term m,tan®6, in equation (13)) is
proportional to tan® @ which approaches infinity as the
leg straightens. Consequently, less work is needed to
accelerate the body to a given speed if it reaches this
speed while the legs are still considerably bent, than if
it does not reach it until the legs are almost straight. A
negative value of £ makes the moment arm initially
high, enabling the elastic recoil of the series compliance
to do most of its work early in the process of leg
extension.

(k) Joint angles

So far we have assumed that the minimum knee
angle occurring in the jump (26,,,) is 60°; the working
range, from this to full extension, is 120°. We will now
ask whether there would be an advantage in working
over a different range, for example from 0° to full
extension (a range of 180°) or from 120° to full
extension (a range of 60°). Assume that the volume of
the muscle and the properties of its constituent fibres
are constant. Then to adapt the muscle to work over a
range of 180° (for example) instead of 120°, the length
of its fascicles should be multiplied by 1.5 and their
physiological cross-sectional area by 0.67. Its maxi-
mum shortening rate would then be 1.5 times, and its
isometric force 0.67 times, the values for 120° range.
More generally, if the range is to be multiplied by a
factor n, d,,, is multiplied by n and £, ,, is divided by
n. Also, if the series elastic element is to be stretched by
the same fraction of muscle fascicle length, when the
muscle exerts its isometric force, the compliance C must
be multiplied by 7*.

These adjustments were made in the calculations for
figure 9, which shows jump heights for different
minimum knee angles. Jump height is greater for lower
minimum knee angles except in figure 94, which shows
intermediate angles giving the highest jumps.

Figure 8¢ will help us to understand these results.
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Like the other parts of this figure it shows muscle force
plotted against length, for a muscle with no series
compliance. The greater the minimum angle, the faster
muscle stress falls as the body accelerates and the less
work does the muscle do. (Remember that work is
represented by the areas under the graphs.)

Our assumptions imply that the muscle has the same
volume in every case and is, in principle, capable of
performing the same amount of work in a contraction.
However, when the minimum angle is larger, the
distance over which the body has to be accelerated to
take-off speed is less, so it has to be accelerated in less
time to reach the same speed. Consequently, the
muscles shorten faster and can exert less force, when
the minimum angle is high.

The argument so far suggests that the lowest
minimum angles should give the highest jumps.
However, figure 94 shows that for jumps with human-
like isometric forces a minimum angle of 40° gives a
higher jump than does one of 0°. The muscles do 22 %,
less work, but the resulting jump is higher. The
explanation is that with a minimum angle of 0° the
hips start at ground level, but if the angle is 40° they
start at a height 2ssin40° = 0.68s.

This effect can only be significant if jump height is
quite small, compared to leg length. The difference of
starting height is too small to counteract the advantage
of a very low minimum angle, in the simulations with
bushbaby-like muscle forces (see figure 94).

There is another advantage of low minimum angles
which has limited importance in the simulations of
mammal jumps but predominates in jumps with insect-
like muscle forces (see figure 8¢). This is that the lower
the minimum angle, the more of the muscle’s work can
be done while the leg is still quite strongly bent, and the
lower the proportion of this work that is lost as internal
kinetic energy. The argument in §5/, relating to the
term m,tan®*@ in equation (13), applies again here.
Simulations with insect-like muscle forces and legs of
zero mass give jump heights almost independent of
minimum angle.

6. DISCUSSION

The models presented in this paper are highly
simplified. Their anatomies resemble those of real
animals only in broad outline. Many simplifying
assumptions have been made: for example, that
muscles are fully activated instantaneously and that, if
there are several extensor muscles, they are activated
simultaneously. These assumptions were avoided by
Pandy et al. (1990) in an optimal control model of
human jumping. There is much uncertainty about the
values of muscle properties such as maximum short-
ening speed and series compliance, which would be
realistic for any particular species. The results never-
theless may help us to understand the principles of
jumping.

They show us that different jumping techniques are
appropriate for animals exerting forces that are
different multiples of body mass. As a general rule,
larger animals exert forces that are smaller multiples of
body weight (Alexander 1985): humans making
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standing jumps exert forces on the ground of 2—-3 times
body weight, and fleas over 100 times body weight (see
§4). However, frogs exert maximum forces of only
about 3.5 times body weight (Hirano & Rome 1984).
Despite the difference in size between them and
humans, the maximum forces they exert are not much
greater, relative to body weight.

Figure 4a tells us that with human-like muscle
forces, countermovement and catapult jumps are
higher than squat jumps. Humans use the counter-
movement technique and healthy young men jump
about 5 cm higher with a countermovement than they
can in a squat jump (Komi & Bosco 1978). For them,
leg segment length s is about 45 cm, so the advantage
in jump height that a countermovement gives is 0.1s.
This matches the advantage given by the simulations
for a compliance parameter of 1.0. It was argued in §4
(admittedly on sparse evidence) that a compliance
parameter of 0.7 might be realistic for mammals.

Figure 4 b shows that for animals exerting bushbaby-
like forces, catapult jumps could be much higher than
countermovement jumps, which in turn can be higher
than squat jumps. Mammals seem not to have evolved
catapult mechanisms, so the options available to them
are countermovement jumping and squat jumping.
The larger prosimians make a countermovement before
jumping, as is shown by forces falling below body mass
in records of jumps by Lemur catta (2.4 kg) and Galago
garnetti (0.8 kg: see figure 6 of Gunther ¢t al. 1991). The
small bushbaby Galago moholi sometimes makes a small
hop which may function as a countermovement, before
jumping (Ginther et al. 1991).

Figure 4¢ shows that catapult jumping is by far the
most effective jumping technique for animals exerting
insect-like ground forces. A variety of catapults have
evolved in insects including the resilin springs of fleas
(Bennet-Clark & Lucey 1967) and the apodemes and
semilunar processes of locusts (Bennet-Clark 1975).
The compliances of these catapults are high, enough in
the locust for their elastic recoil to move the knee
through its whole angular range (Bennet-Clark 1975).
Figure 3¢ shows that for catapult jumps with such high
compliances, the maximum shortening speed of the
muscle makes little difference to the height of the jump.
The knee extensor muscles of locusts seem to be slow,
with maximum shortening speeds of only 2 lengths per
second (Bennet-Clark 1975). It is probably inevitable
that they should be fairly slow, as their sarcomeres are
long, with 5.5 pm-thick filaments. They exert high
isometric stresses, of about 0.7 MPa. Muscles with long
thick filaments can exert high stresses because large
numbers of cross-bridges connect each thick filament to
a neighbouring thin one, but they tend to be slow
because high cross-bridge cycling rates are needed to
make the muscle contract at any given strain rate
(Ruégg 1968). The long sarcomeres of locust knee
extensor muscle allow it to exert high stresses, enabling
a given volume of muscle to do a large quantity of work
as it shortens to deform the catapult springs. The good
effect of this on jump performance must far outweigh
the small disadvantage of the muscles’ being slow.

Figure 5 shows that jump height is reduced by heavy
legs. However, if the jump is powered by a leg muscle
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(as in locusts) that muscle must be large to power a  legs as much as bushbabies and insects, when preparing
strong jump, and the leg cannot be very light. to jump. This is observed; humans bend the knee to
Comparison of the simulations with mammal-like leg  about 75° (Bobbert & van Ingen Schenau 1988),
proportions in figure 5a with those with thigh and  Galago to 30° (Giinther 1985) and locusts almost to 0°
lower leg masses reversed shows that the total mass of  (Heitler 1977). I am not inclined to attach much
the leg influences jumping ability more than the  significance to this correspondence between theory and

distribution of the mass. This is in contrast to running, observation because human legs are not principally
for which it is particularly important that the distal adapted for jumping.
parts of the limbs should be light, to minimize the Jumping is a relatively simple process, performed in

kinetic energy required for each forward or backward  similar ways by a wide variety of animals. An objective

leg swing (Fedak et al. 1982). Jumping vertebrates do (to jump as high or as far as possible) is easily defined.

not have the very light feet found in ungulates. These features make jumping a peculiarly attractive
The finding that legs with more than two segments subject for investigations such as this one, which has

make higher jumps possible is striking (see figure explored the effects of muscle properties, leg design and

5a, b). It seems to throw light on the evolution of the technique on jumping performance.

elongated tarsal bones of bushbabies and frogs (illu-

strated in Rogers 1986) which, in effect, add a segment
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